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Purpose  Study Area 

Issues of Sampling Scale and Transferability for Digital Soil Mapping 

The conversion of point observations to a geographic field is a necessary step 
in soil mapping. Addressing issues of sustainability requires soil mapping at the 
landscape scale. Such an endeavor, however, needs to consider relationships 
between sampling scale, representation of spatial variation, and accuracy of 
estimated error. Also, the importance of extending information from sampled 
points increases with larger map extents due to limitations in practical 
sampling density. Therefore, the purpose of this research is to examine the 
ability of different spatial models to predict a soil property for a range of 
scales and for areas beyond the sampling extent. The accuracy of model error 
estimations is also tested. 
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Resulting Maps 

ZALF-Kernthema 1  Landscape Functioning 

Verbundprojekt (Carbon)Biogeochemistry of Landscapes 

Querschnittsprojekt LandStructure 

Methods  
Tested spatial modelling methods included ordinary kriging (OK), co-kriging 
(CK) with the leaf area index (LAI), CK with relative elevation (REL), universal 
kriging (UK) with both of the covariates used with CK, as well as rule-based, 
multiple linear regression (MLR) with LAI and REL, separately. Selection of 
these covariates was done by Cubist as part of the MLR model construction. 

For the most part, differences in the maps highlight the known limitations of the respective modelling methods. Spatial autocorrelation methods (i.e. kriging) are not 
suited for predicting areas outside the sampling extent. Spatial association methods (i.e. spatial regression) require calibration on the full feature space of the area 
being mapped. Although this suggests that spatial regression methods have the greatest potential for transferability, greater distances from the calibration area still 
increase the chances of encountering problems of induction, i.e., it is difficult to predict patterns/relationships that have not been observed. However, comparison 
with validation points and known landscape features within these map areas demonstrated that distance is not a requirement for encountering the problem of 
induction. 
  

Conclusion 

Despite their different strategies, all spatial modelling approaches are susceptible to the problem of induction. Although standard metrics of prediction performance 
were generally similar across modelling methods, spatial regression showed the capability of being resilient in areas that were technically outside the sampled 
feature space. Although this ability is dependent on the covariates used, it can be a benefit to digital soil mapping where the problem of induction is a constant 
issue. 

Meso-scale Macro-scale 
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Performance (R2)  Validation Points 

Models Micro Meso-All 
Meso-

Internal 
Meso-

External 
a) OK 0.41 0.39 0.42 0.07 
b) CK-LAI 0.41 0.39 0.43 0.06 
c) CK-REL (20m) 0.41 0.39 0.42 0.07 
d) UK-LAI & REL (20m) 0.41 0.39 0.43 0.06 
e) MLR- LAI 0.57 0.56 0.56 0.56 
f) MLR- REL (20m) 0.28 0.01 0.06 0.03 

Performance (R2)  Validation Points 

Models Micro Meso-All 
Meso-

Internal 
Meso-

External Macro 
a) OK 0.56 0.61 0.71 0.05 0.00 
b) CK-LAI 0.57 0.60 0.71 0.03 0.03 
c) CK-REL (5200m) 0.54 0.54 0.70 0.06 0.02 
d) UK-LAI & REL (5200m) 0.55 0.55 0.71 0.06 0.05 
e) MLR- LAI 0.59 0.55 0.61 0.28 0.34 
f) MLR- REL (5200m) 0.58 0.45 0.48 0.04 0.32 

Accuracy of 
Error Estimation Models 

OK CK-LAI CK-REL UK MLR-LAI MLR-REL 
Micro Validation 
   Mean Est. Error 0.096 0.066 0.057 0.056 0.085 0.093 
   Within Range 59% 45% 37% 34% 58% 70% 
Meso-Internal Validation 
   Mean Est. Error 0.098 0.067 0.058 0.056 0.078 0.090 
   Within Range 73% 61% 57% 54% 56% 56% 
Macro Validation 
   Mean Est. Error 0.160 0.149 0.262 0.259 0.084 0.092 
   Within Range 21% 21% 25% 25% 29% 29% 

Accuracy of 
Error Estimation Models 

OK CK-LAI CK-REL UK MLR-LAI MLR-REL 
Micro Validation 
   Mean Est. Error 0.587 0.587 0.587 0.587 0.306 0.382 
   Within Range 100% 100% 100% 100% 86% 90% 
Meso Validation 
   Mean Est. Error 0.631 0.631 0.631 0.631 0.306 0.382 
   Within Range 98% 98% 98% 98% 96% 76% 

In general, all the models performed similarly at most 
validation scales. The notable exceptions were the 
stronger performance of kriging for meso-internal 
validation and some resilience of the MLR models in 
spatial extrapolation areas. 

Although the models calibrated on the macro-scale 
points did not perform as well on the same validation 
points as the meso-scale models, the performance was 
still very similar across modelling methods. The major 
exception was the consistent strength of the MLR-LAI 
model (italics) and the greatly reduced performance of 
the MLR-REL model. 

Theoretically, observed error should be within the 
range of the estimated error approximately 68% of the 
time. Kriging with covariates reduced estimated error 
at validation points, but those were underestimations 
of the observed error. As expected, more distant 
spatial extrapolation greatly reduced the models’ 
ability to estimate their prediction errors. 

Error estimations by models calibrated on the macro-
scale points were an order of magnitude larger than 
those made by the meso-scale models. However, these 
tended to be overestimations of the error observed at 
the validation points. The distribution of estimated 
error for the kriging models showed the expected 
pattern of reliance on spatial autocorrelation, but also 
indicated that the covariates were not very influential 
in those models. The estimated error for the MLR 
models did not vary because both models only used 
one rule. 

Soil organic carbon content (SOC%) has been intensively sampled at the CarboZALF 
research site under different sampling strategies for a variety of projects. This 
collection of data provided a unique opportunity to test the sampling scale’s 
affect on a variety of spatial prediction methods. 
 
Stratified randomly sampled points taken at two different scales were used as 
separate calibration sets. Independent sample sets taken on grids at two different 
scales were used for validation. The macro-scale points served as an additional 
validation test for the models calibrated by the meso-scale points. 

macro-scale 65 ha 
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